Performance Optimization Guide
This comprehensive guide covers performance optimization strategies for Chutes applications, from model inference to network efficiency and resource management.
Overview
Performance optimization in Chutes involves several key areas:
- Model Optimization: Quantization, compilation, and batching
- Resource Management: Efficient GPU and memory usage
- Scaling Strategies: Auto-scaling and load balancing
- Caching: Reducing redundant computations
- Network Optimization: Minimizing latency and payload size
- Monitoring: Tracking metrics to identify bottlenecks
Model Inference Optimization
Dynamic Batching
Processing requests in batches significantly improves GPU utilization. Here's a robust dynamic batcher implementation:
import asyncio
import time
from typing import List, Dict, Any
from dataclasses import dataclass
@dataclass
class BatchRequest:
data: Dict[str, Any]
future: asyncio.Future
timestamp: float
class DynamicBatcher:
def __init__(self, max_batch_size: int = 32, max_wait_time: float = 0.01):
self.max_batch_size = max_batch_size
self.max_wait_time = max_wait_time
self.pending_requests: List[BatchRequest] = []
self.processing = False
self.lock = asyncio.Lock()
async def add_request(self, data: Dict[str, Any]) -> Any:
"""Add request to batch queue"""
future = asyncio.Future()
request = BatchRequest(data, future, time.time())
async with self.lock:
self.pending_requests.append(request)
if not self.processing:
asyncio.create_task(self._process_batch())
return await future
async def _process_batch(self):
"""Process accumulated requests"""
async with self.lock:
if self.processing or not self.pending_requests:
return
self.processing = True
while True:
# Wait for batch to accumulate or timeout
start_time = time.time()
while (len(self.pending_requests) < self.max_batch_size and
time.time() - start_time < self.max_wait_time):
await asyncio.sleep(0.001)
async with self.lock:
if not self.pending_requests:
break
# Extract batch
batch_size = min(len(self.pending_requests), self.max_batch_size)
batch = self.pending_requests[:batch_size]
self.pending_requests = self.pending_requests[batch_size:]
# Run inference
try:
batch_data = [req.data for req in batch]
results = await self._run_inference(batch_data)
for req, result in zip(batch, results):
if not req.future.done():
req.future.set_result(result)
except Exception as e:
for req in batch:
if not req.future.done():
req.future.set_exception(e)
async with self.lock:
self.processing = False
async def _run_inference(self, batch_data: List[Dict]) -> List[Any]:
"""Override this with your actual inference logic"""
# Example:
# inputs = tokenizer([item["text"] for item in batch_data], padding=True, return_tensors="pt")
# outputs = model(**inputs)
# return outputs
return [{"result": "mock_result"} for _ in batch_data]Model Quantization
Reduce model size and memory footprint using quantization (e.g., 8-bit or 4-bit):
from chutes.image import Image
# Build image with quantization support
image = (
Image(username="myuser", name="quantized-model", tag="1.0")
.pip_install([
"torch",
"transformers",
"bitsandbytes", # Required for 8-bit/4-bit
"accelerate"
])
)
# Loading a quantized model
def load_quantized_model():
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
import torch
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/DialoGPT-medium",
quantization_config=quant_config,
device_map="auto"
)
return modelTorchScript Compilation
Compile PyTorch models for faster execution:
import torch
def optimize_model(model, example_input):
# Trace the model
traced_model = torch.jit.trace(model, example_input)
return torch.jit.freeze(traced_model)Resource Management
GPU Memory Management
Properly managing GPU memory is critical to avoid OOM errors and maximize throughput.
import torch
import gc
from contextlib import contextmanager
class GPUMemoryManager:
@contextmanager
def optimization_context(self):
"""Context manager to clear cache before and after operations"""
self.cleanup()
try:
yield
finally:
self.cleanup()
def cleanup(self):
"""Aggressive memory cleanup"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def get_usage(self):
if not torch.cuda.is_available():
return 0
return torch.cuda.memory_allocated() / torch.cuda.max_memory_allocated()
# Usage
memory_manager = GPUMemoryManager()
async def run_inference(inputs):
with memory_manager.optimization_context():
# Run heavy inference here
passScaling Strategies
Auto-scaling Configuration
Configure your chute to scale automatically based on load:
from chutes.chute import Chute, NodeSelector
chute = Chute(
# ... other args ...
concurrency=10, # Max concurrent requests per instance
# Auto-scaling settings
auto_scale=True,
min_instances=1,
max_instances=10,
scale_up_threshold=0.8, # Scale up when 80% concurrency reached
scale_down_threshold=0.3, # Scale down when <30% utilized
scale_up_cooldown=60, # Wait 60s before next scale up
scale_down_cooldown=300 # Wait 5m before scaling down
)Caching Strategies
Redis Caching
Use Redis for distributed caching across multiple chute instances:
import redis
import pickle
import hashlib
class CacheManager:
def __init__(self, redis_url="redis://localhost:6379"):
self.redis = redis.from_url(redis_url)
def get_key(self, prefix, *args, **kwargs):
key_str = str(args) + str(sorted(kwargs.items()))
return f"{prefix}:{hashlib.md5(key_str.encode()).hexdigest()}"
def get(self, key):
data = self.redis.get(key)
return pickle.loads(data) if data else None
def set(self, key, value, ttl=3600):
self.redis.setex(key, ttl, pickle.dumps(value))
# Decorator usage
def cached(ttl=3600):
def decorator(func):
async def wrapper(self, *args, **kwargs):
key = self.cache.get_key(func.__name__, *args, **kwargs)
result = self.cache.get(key)
if result:
return result
result = await func(self, *args, **kwargs)
self.cache.set(key, result, ttl)
return result
return wrapper
return decoratorNetwork Optimization
Response Compression
Compress large JSON responses to reduce network transfer time:
import gzip
import json
def compress_response(data: dict) -> dict:
json_str = json.dumps(data)
if len(json_str) < 1024: # Don't compress small responses
return data
compressed = gzip.compress(json_str.encode())
return {
"compressed": True,
"data": compressed.hex()
}Streaming
For long-running generations (like LLMs), use streaming to provide immediate feedback. See the Streaming Guide for details.
Monitoring
Track performance metrics to identify bottlenecks.
import time
from prometheus_client import Histogram, Counter
REQUEST_TIME = Histogram('request_processing_seconds', 'Time spent processing request')
REQUEST_COUNT = Counter('request_count', 'Total request count')
@chute.cord(public_api_path="/run", method="POST")
async def run(self, data: dict):
REQUEST_COUNT.inc()
with REQUEST_TIME.time():
# Process request
return await self.process(data)Next Steps
- Cost Optimization: Balance performance with cost
- Best Practices: General deployment guidelines
- Streaming Guide: Implement real-time responses