Best Practices for Production-Ready Chutes
This comprehensive guide covers production best practices for building, deploying, and maintaining robust, scalable, and secure Chutes applications in production environments.
Overview
Production-ready Chutes applications require:
- Scalable Architecture: Design for growth and varying loads
- Security: Protect data, models, and infrastructure
- Performance: Optimize for speed, memory, and resource efficiency
- Reliability: Handle failures gracefully with high availability
- Monitoring: Complete observability and alerting
- Maintainability: Code quality, documentation, and operational procedures
Application Architecture
Modular Design Patterns
from abc import ABC, abstractmethod
from typing import Protocol, TypeVar, Generic, Any, Optional, Dict
from dataclasses import dataclass
import logging
# Define clear interfaces
class ModelInterface(Protocol):
"""Protocol for AI model implementations."""
async def load(self) -> None:
"""Load the model into memory."""
...
async def predict(self, input_data: Any) -> Any:
"""Make prediction on input data."""
...
async def unload(self) -> None:
"""Unload model from memory."""
...
class CacheInterface(Protocol):
"""Protocol for caching implementations."""
async def get(self, key: str) -> Optional[Any]:
...
async def set(self, key: str, value: Any, ttl: int = None) -> None:
...
async def delete(self, key: str) -> None:
...
# Implement dependency injection
@dataclass
class Dependencies:
"""Application dependencies container."""
model: ModelInterface
cache: CacheInterface
logger: logging.Logger
metrics: Any # Metrics collector
config: Dict[str, Any]
class ServiceBase(ABC):
"""Base class for application services."""
def __init__(self, deps: Dependencies):
self.deps = deps
self.logger = deps.logger
self.model = deps.model
self.cache = deps.cache
@abstractmethod
async def initialize(self) -> None:
"""Initialize the service."""
pass
@abstractmethod
async def cleanup(self) -> None:
"""Cleanup service resources."""
pass
class TextGenerationService(ServiceBase):
"""Text generation service implementation."""
async def initialize(self) -> None:
"""Initialize text generation service."""
await self.model.load()
self.logger.info("Text generation service initialized")
async def generate(self, prompt: str, **kwargs) -> Dict[str, Any]:
"""Generate text with caching and error handling."""
# Create cache key
cache_key = self._create_cache_key(prompt, kwargs)
# Try cache first
cached_result = await self.cache.get(cache_key)
if cached_result:
self.logger.info("Cache hit for text generation")
return cached_result
# Generate new result
try:
result = await self.model.predict(prompt, **kwargs)
# Cache result
await self.cache.set(cache_key, result, ttl=3600)
return result
except Exception as e:
self.logger.error(f"Text generation failed: {e}")
raise
def _create_cache_key(self, prompt: str, kwargs: Dict) -> str:
"""Create deterministic cache key."""
import hashlib
import json
key_data = {"prompt": prompt, "params": sorted(kwargs.items())}
key_str = json.dumps(key_data, sort_keys=True)
return f"text_gen:{hashlib.md5(key_str.encode()).hexdigest()}"
async def cleanup(self) -> None:
"""Cleanup resources."""
await self.model.unload()
self.logger.info("Text generation service cleaned up")
# Chute implementation with dependency injection
from chutes.chute import Chute
chute = Chute(username="production", name="text-service")
@chute.on_startup()
async def initialize_app(self):
"""Initialize application with proper dependency injection."""
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("text-service")
# Initialize model
model = await self._create_model()
# Initialize cache
cache = await self._create_cache()
# Initialize metrics
metrics = await self._create_metrics()
# Load configuration
config = await self._load_config()
# Create dependencies container
self.deps = Dependencies(
model=model,
cache=cache,
logger=logger,
metrics=metrics,
config=config
)
# Initialize services
self.text_service = TextGenerationService(self.deps)
await self.text_service.initialize()
async def _create_model(self):
"""Factory method for model creation."""
# Implementation depends on your specific model
pass
async def _create_cache(self):
"""Factory method for cache creation."""
# Could be Redis, Memcached, or in-memory cache
pass
async def _create_metrics(self):
pass
async def _load_config(self):
return {}Configuration Management
import os
from typing import Optional, Union
from pydantic import BaseSettings, Field, validator
from pathlib import Path
class ApplicationConfig(BaseSettings):
"""Production application configuration."""
# Environment
environment: str = Field("production", env="APP_ENV")
debug: bool = Field(False, env="APP_DEBUG")
# Model settings
model_name: str = Field(..., env="MODEL_NAME")
model_path: Optional[str] = Field(None, env="MODEL_PATH")
max_batch_size: int = Field(8, env="MAX_BATCH_SIZE")
# Performance settings
max_workers: int = Field(4, env="MAX_WORKERS")
request_timeout: float = Field(30.0, env="REQUEST_TIMEOUT")
max_memory_usage: float = Field(0.9, env="MAX_MEMORY_USAGE")
# Cache settings
cache_backend: str = Field("redis", env="CACHE_BACKEND")
cache_url: str = Field("redis://localhost:6379", env="CACHE_URL")
cache_ttl: int = Field(3600, env="CACHE_TTL")
# Logging
log_level: str = Field("INFO", env="LOG_LEVEL")
log_format: str = Field("json", env="LOG_FORMAT")
# Security
api_key_required: bool = Field(True, env="API_KEY_REQUIRED")
allowed_origins: list = Field(["*"], env="ALLOWED_ORIGINS")
rate_limit_requests: int = Field(100, env="RATE_LIMIT_REQUESTS")
rate_limit_window: int = Field(60, env="RATE_LIMIT_WINDOW")
# Monitoring
metrics_enabled: bool = Field(True, env="METRICS_ENABLED")
health_check_interval: int = Field(30, env="HEALTH_CHECK_INTERVAL")
@validator('log_level')
def validate_log_level(cls, v):
valid_levels = ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL']
if v.upper() not in valid_levels:
raise ValueError(f'Log level must be one of: {valid_levels}')
return v.upper()
@validator('max_memory_usage')
def validate_memory_usage(cls, v):
if not 0.1 <= v <= 1.0:
raise ValueError('Memory usage must be between 0.1 and 1.0')
return v
class Config:
env_file = ".env"
env_file_encoding = "utf-8"
# Environment-specific configurations
class DevelopmentConfig(ApplicationConfig):
"""Development environment configuration."""
environment: str = "development"
debug: bool = True
log_level: str = "DEBUG"
api_key_required: bool = False
class StagingConfig(ApplicationConfig):
"""Staging environment configuration."""
environment: str = "staging"
debug: bool = False
log_level: str = "INFO"
class ProductionConfig(ApplicationConfig):
"""Production environment configuration."""
environment: str = "production"
debug: bool = False
log_level: str = "WARNING"
api_key_required: bool = True
def get_config() -> ApplicationConfig:
"""Get configuration based on environment."""
env = os.getenv("APP_ENV", "production").lower()
config_classes = {
"development": DevelopmentConfig,
"staging": StagingConfig,
"production": ProductionConfig
}
config_class = config_classes.get(env, ProductionConfig)
# Note: In a real app you'd instantiate this properly with env vars
# return config_class()
return config_class(model_name="default-model") # simplified for example
# Usage in Chute
@chute.on_startup()
async def load_configuration(self):
"""Load and validate configuration."""
self.config = get_config()
# Configure logging based on config
import logging
logging.basicConfig(
level=getattr(logging, self.config.log_level),
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(f"chute.{self.config.environment}")
self.logger.info(f"Application started in {self.config.environment} mode")Performance Optimization
See the Performance Optimization Guide for detailed strategies. Key areas include:
- Dynamic Batching: Group requests for efficient GPU usage.
- Caching: Cache expensive model outputs using Redis or in-memory stores.
- Quantization: Use 8-bit or 4-bit quantization to reduce memory footprint and increase speed.
- Async Processing: Use async/await to handle concurrent requests without blocking.
Security Best Practices
See the Security Guide for a deep dive. Essentials:
- Authentication: Always use API keys or JWTs in production.
- Input Validation: Validate and sanitize all inputs using Pydantic schemas.
- Rate Limiting: Prevent abuse by limiting requests per user/IP.
- Secrets Management: Use environment variables or mounted volumes for secrets; never hardcode them.
Monitoring and Observability
Implement structured logging and metrics to track the health of your application.
import time
from contextlib import contextmanager
from datetime import datetime
import json
import logging
class StructuredLogger:
def __init__(self, name):
self.logger = logging.getLogger(name)
# Configure JSON handler...
def info(self, message, **kwargs):
self.logger.info(json.dumps({"message": message, **kwargs}))
class PerformanceMonitor:
def __init__(self):
# Initialize prometheus metrics...
pass
@contextmanager
def measure_request(self, endpoint):
start = time.time()
try:
yield
finally:
duration = time.time() - start
# Record metric...Deployment Best Practices
Production Deployment Checklist
class ProductionDeploymentChecklist:
"""Comprehensive production deployment checklist."""
CHECKLIST = {
"Security": [
"✓ Enable HTTPS/TLS encryption",
"✓ Configure API authentication",
"✓ Set up rate limiting",
"✓ Sanitize all inputs",
"✓ Secrets management",
],
"Performance": [
"✓ Load testing completed",
"✓ Memory usage optimized",
"✓ Caching implemented",
"✓ Auto-scaling rules configured",
],
"Reliability": [
"✓ Health checks implemented",
"✓ Error handling comprehensive",
"✓ Graceful shutdown handled",
],
"Monitoring": [
"✓ Application metrics",
"✓ Error tracking",
"✓ Log aggregation",
"✓ Alert configuration",
],
}Summary and Next Steps
This guide covers the essential patterns for building production-grade Chutes.
Implementation Priority
- Security: Authentication and input validation.
- Monitoring: Logging and basic metrics.
- Performance: Caching and resource management.
- Reliability: Error handling and health checks.
For more specific guides, see: